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Linearization of the boundary condirions on the partition surfaces is
used to obtain simple design relationships for the determination of the
heating surface of radiative-convective recuperators.

New trends in engineering development make it
necessary to devise calculation methods for recupera-
tors operating at high temperatures. Such recuperators
are, in'particular, essential parts of apparatuses for
the direct conversion of thermal to electrical energy
[1—4] and also find application in the chemical, power,
metallurgical, and forging industries [5-8].

The main difficulty in obtaining design relation-
ships for such recuperators is that the radiative com-
ponent of the heat flux imparts significant nonlinearity
to the initial differential equations. Hence, it is
natural to attempt to linearize these equations. The
simplest approach to this consists in the introduction
of a heat transfer coefficient o = o, + 0 composed
of convective and radiative components [9, 10]. The
drawback of the method is that «, changes very con-
siderably with temperature along the apparatus and,
hence, the choice of an appropriate numerical value
for this quantity is very approximate.

Another approach—the method of successive ap-
proximations, described in [7]—is very awkward and
laborious.

Good results are given by the computer calcula-
tions used by the authors of [5,16], but the use of
machine techniques entails the writing of programs
for each variant of the boundary conditions which
determine the operation of the apparatus, and, hence,
this method is very time-consuming.

We will consider a radiative~convective recupera-
tor (Fig. 1). We will assume that the two heat-
exchanging gases are diathermal and the casing of the
apparatus is thermally insulated, so that no heat is
lost to the surroundings. The hot gas, flowing in
the annular space 2, transmits heat by convection
through the partition 3 to the gas flowing through
tube 1, The wall of the casing is also heated by the
hot gas and transmits heat to the wall of the inner
tube by radiation.

It is known that in the case of purely convective
heat transfer in a recuperator the heat transfer in
any cross section of the apparatus is determined by
the difference in the temperatures of the fluids in
this section. This does not apply to radiative heat
transfer between the casing wall and the inner tube,
since the radiative heat flux in any section will depend
not only on the difference of the fourth powers of the
wall temperatures in it, but also on the heat fluxes
due to radiative interaction with other points of the
tube or casing, as shown by the arrows in Fig. 1.

Nevertheless, it is assumed in papers devoted to the
calculation of radiative recuperators [5, 7] that the
radiant flux is determined entirely by the difference
#* — 9, In certain conditions this assumption is
valid and ensures sufficient accuracy for engineering
calculations. The only requirement is that the distance
between the walls exchanging radiant heat should be
small in comparison with the total length of the ap-
paratus, since it is easy to show from purely geo-
metric considerations that for a solid angle of 0.6 sr
90% of the total energy of hemispherical emission
will correspond to a portion of the length of the heat-
transfer surface equal approximately to four times
the distance between the casing and the inner tube. If
the change of the temperature of the fluids is small
in this portion, which will be the case in the above~
mentioned conditions, the convective and radiative
heat exchange can be regarded as taking place in the
same cross section and will be characterized by the
temperatures of the fluids and partitions in it. McAdams
[11] arrived at a similar conclusion from a qualita~
tive consideration of the heating of articles in a long
oven with variable wall temperature.

The heat exchange between the fluids in steady-
state parallel flow in a recuperator is described by
the following system of differential equations [12]:
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the last equation being applicable to the case of a
cylindrical partition if the ratio of the outer and
inner diameters of the tube is close to unity.

Equation (3) ignores the heat transfer along the
partition, i.e., along the x axis, which does not
introduce an appreciable error if the length of the
apparatus is more than ten times the thickness of
the partition [12]. Solution (3) must satisfy the
following boundary conditions in any cross section
of the apparatus:
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We must also have another relationship

az (T" —4) — e0o (§* — 975) =0, (6)

derived from the condition of thermal equilibrium of

the apparatus casing. Bearing in mind that the solu-
tion of (3) is

ﬁ]g :C1+CQZ, (7)
and making it conform with cohditions (4) and (5), we
obtain after simple transformations :
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from which with reference to (6)
(T" —9)/ (8], — &%) =1+ Biy/Bi, (1-+-2Biy) =b, (9)
where
&% — Bi, T’ + Bi,y (1+-2Biy) T (10)

Bi, + Bi, (1--2Biy)

is the temperature which would be established on the
surface of the partition on the side of the hotter fluid
in the absence of radiative heat transfer.

Determining ¢ from (9) and substituting its value
in (8a), we ultimately find
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where
!12800(1"}'2811)/[0-1 + (12(1‘{‘2511)]- (12)
Equation (11) establishes the relationship
T8 = (§,/0%, ad*’, b). (13)

This functional relationship, as can be seen from (11),
cannot be put in an explicit form suitable for use. In
Fig. 2 this relationship is depicted graphically for a
fairly wide range of arguments.
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A point of interest is that for each fixed value of b
the value of the ratio T"/¥* depends practically en-
tirely on ¢ Jy/9*, and the effect of parameter ad* over
a very wide range of its variation is slight.

This circumstance indicates that combined radiative
and convective heat transfer is determined not by the
values of such characteristics as e, @, A, and J* taken
separately, but by their combination in the form ad*3,
A change in this parameter when its value is small
significantly affects the value of T"/J*, but when ad*
attains a certain value this effect becomes insignifi-
cant, as is clearly illustrated in Fig. 3, which shows
that, beginning at approximately 0.05, an increase in
ad$*3 by a factor of ten or more alters the value of
T"/3* by only a few per cent. The relative value of
this change decreases with increase in the parameter
b.

The condition ad*® = 0.05 means in practice that
the recommended method is applicable to recuperators
with temperature 4* > 600° K, In a recuperator, if
we ignore the variation of the thermophysical char-
acteristics of the gas with temperature, the variation
of the parameter a¢ *3 along the length of the apparatus
is due entirely to the temperature $*, which depends
in turn on the temperature of the fluids in the specified
conditions of convective heat transfer. The value of 4*
in parallel-flow apparatus in many important practical
cases increases or decreases by a factor of not more
than two or three, although, as was shown in [12], it
may even remain constant in certain conditions.

Thus, in a wide range of variation of the parameter
relationship (13), as Fig. 2 shows, can be well ap-
proximated by a family of straight lines:

T'0% = A+ By o7,/8%
or

8, = T"/B, — A 0%/B, = AT" + B, (14)

In a first approximation A and B are functions only of
parameter b.
The values of coefficients A and B in Eq. (14) are

A.102 B Maximum Error, %
2 31.0 0.685 4.0
4 20.8 0.790 2.5
10 8.00 0.919 1.0
25 2.60 0.974 <1
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Fig. 1. Diagram of radiative-convective recuperator.
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Substitution of the corresponding values from formu-
las (14), (8b), and (10) in (1) and (2) leads to the fol-
lowing two equations:

T — _l—:ﬁ+—8) a1 | 7"+ Ry ar ) (15)
P dv,
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Fig. 2. T"/$* as a function of ¢7,/3*; 1) for ad*d =
= 0.05; 2) a$*® — ; I) for B =25;1I) 10; [114:IV) 2.

The first term in the square brackets of formula
(15) is very much less than unity, as the table shows
that A + B ~ 1. Taking this into account with a,/k¥ <
< 20, we obtain from (15) and (16)

' o dr’

—— (I + Ry - & =0. (17
dv;c ( Ryq g) dvx )

In formulas (15)—(17)

k* = Bk, v, = k*F Wy, & = (a,/k*) (1— B)/(1--2Biy). (18)

From an examination of (17) we can conclude that
calculation of a radiative-convective heat-exchanger
reduces to the solution of a differential equation des-
cribing the process in an apparatus of purely con-
vective type if the ratio of the water equivalents is
altered by a value ¢, and the heat transfer coefficient
is multiplied by B.
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Fig. 3. T"/#* as a function of the parameter
a$** for b = 2 (1) and 4 (2).

For the two cases of flow of the fluids the solution

of (17) has to satisfy the following boundary conditions:

for parallel flow
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= (148 (T7—Tih (19)

o =0

for counterflow
dT" |
dv

(19a)
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We finally obtain for parallel flow of the fluids

v = ks F/W, —
= — (4 R =57 In {T— 6 [1+ Rio/(1--8))) (20)

and for counterflow
v=—(1—Ryp+&)1tln{l —
(21)
—[0y/(1— Rz O1 [1— Rys/(1-+ D)1}

where

Of = (Tf — T{)/T{—T}). (22)

The presence of radiative heat transfer in the

parallel-flow apparatus leads to greater utilization
of the temperature head than in the case of purely
convective heat transfer. The maximum attainable
dimensionless temperature in this case is determined

from (20) by putting the expression under the logarithm
sign equal to zero; then

(@;—)max: (1+8/(14 % + Ry).
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Fig. 4. Ratio w of heat-transfer surfaces in
radiative-convective recuperator with paral-
lel flow and counterflow of fluids in relation
to dimensionless temperature ©f for £ = 1
and ratio Ry, of water equivalents equal to:
1)0.2:2) 0.5:3) 1.0; 4) 2.0; 5) 3. 0.

It is of interest to compare the efficiencies of the
two kinds of heat transfer (Fig. 4).

We note that parallel flow in the range of final fluid
temperatures attainable with such flow is more effi-
cient than counterflow. This result is very important,
since it leads to the conclusion that radiative-convec-
tive recuperators should not be designed for counter-
flow of the fluids when the conditions of operation are
such that @'f <(®}) max-

The physical explanation of this circumstance is
that in parallel flow the wall temperature is lower
and the amount of radiant heat transmitted from the
casing to the inner tube is greater than in counterflow.
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The above design formulas were obtained, as in-
dicated, for the case of heat exchange between two
diathermal gases. It can be shown, however, that in
certain conditions they can be applied with a reason-
able degree of accuracy when the heat-exchanging
gases are radiating media.

An analytical solution, involving several simplify-
ing assumptions, of the problem of the heat exchange
of a gray gas flowing in a tube with constant wall
temperature was given in [13]. The use of this solution
is difficult, since it includes a generalized thermal
diffusivity of unknown numerical value.

An examination of the expression given by Nevskii
[14] for the resultant heat flux between parallel gray
surfaces separated by a space filled with an absorb-
ing and reemitting medium,

oo (84 — 975
Ue + e —1+e/(2—¢)

shows that when the value of e" is small this expres-
sion is converted to the formula for radiative heat
exchange between surfaces in a transparent medium.
Thus, if e" < 0.05, the use of formulas (20) and (21)
is justified. For carbon dioxide and water vapor these
values of e" correspond to pl = (0.02—0.05) = 10° N/m
(0.02-0.05 m ° atm). In radiative heat-exchangers
where one of the fluids is furnace gas the effective
ray length is small in many cases and the partial
pressure of CO, and HyO does not exceed 0.3 ¢ 10°
N/m? and, hence, the value of ¢" does not exceed the
indicated limit.

Besides this circumstance, however, it should be .
borne in mind (as McAdams [11] noted) that in the
case of radiative heat exchange between surfaces
separated by an emitting gas there is, on one hand,
an increase in the temperature of the adiabatic enve-
lope, which in our case is the casing of the apparatus
and, on the other, an increase in the heat flux between
the surfaces through "windows" in the absorption
spectrum of the gases. The resultant effect is some
screening due to the gas interlayer. Jakob [15] showed
for a specific example of heat exchange between sur-
faces with 4 = 1367° K, 4191'2 = 811° K and separated by
a gas layer with 1,0 ~ 0.205 that the presence of this
layer reduces the amount of transmitted heat by only
8% in comparison with the case of absence of a gas
between the surfaces,

We can conclude from the above that the recom-
mendations made in this paper for the calculation of
radiative~convective recuperators can also be used
in cases where the hotter fluid is itself an emitting
medium.

It should be noted in conclusion that the obtained
approximate design relationships are also valid for
the case where the colder gas flows through the inter-
tube space. In this case, however, T'/3$* must be
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> 0.5, since for lower values of this ratio the error
in using formula (14) may be more than 10%.

NOTATION

T—~temperature of heat-rransfer fluids, °K; $—temperature of
partition or casing, °K; W—water equivalent of fluids, W/deg; o~
heat transfer coefficient, W/m2 - deg; s—mean heat-transfer perimeter,
m; Bi—see (8); e—emissivity; A—thermal conductivity, W/m - deg;
s—thickness of partition, m; ®—dimensionless temperature, see (22);
Ryy = 1/Ry; = W/ Wy E~see (18); F—heat~transfer swrface, m? k—
heat-transfer coefficient, W/m?- deg; x and z—coordinates, m. The
subscripts 1 and 2, and also primes and double primes, refer, respec-
tively, to the colder and hotter fluids; f refers to the outflow of fluid
from the apparatus; x—coordinate along the length of the apparatus;
the subscript 12 refers to the partition.
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